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In this continuation of an earlier paper we develop further the theme of quantum logical
specification and derive from it some apparently physically viable instantiations of
potential quantum computing devices. Specifically, in the case of a one-parameter set
of terms (or labels)—read as instants of time—we find, emerging quite naturally from
the algebraic setup, the paradigm for a single qubit epitomized by the case of a two-state
fermion interacting with an external single mode boson. This covers the cases: cavity
QED, trapped ions, and, when the qubits are multiplexed appropriately, NMR based
systems. (This case degenerates to one in which only bosons are relevant as in the
case of pure bosonic harmonic oscillator models in the “dual rail” representation. Such
models fly in the face of the logic itself, thus clearly revealing even at this level their
well-known shortcomings as practical quantum computing devices. Here as elsewhere
logical constraints apparently dominate physical ones.)

In a final section we indicate briefly how this process exactly generalizes, in the case
of a manifold of terms more general than the one-parameter case, to yield the notion of
holonomic quantum computation.

In the course of this investigation we find an interpretation of path integrals as limits
of sequences of logical CUTS, thus establishing a link—though still tenuous—between
ensembles of acts of quantum computation and Lagrangians.
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1. REVIEW

In this section we briefly review the results and notations of Selesnick (2003a).
We argued there that, like ordinary classical logic, full quantum logic is inade-
quate for the constructive exigencies of computational applications. One problem
with classical logic lies in the anomaloulsy non-constructive nature of material
implication—a problem compounded in quantum logic even for the best behaved
choice of implicative connective, namely the Sasaki hook, whose behavior depends
crucially upon the presence of orthomodularity. Consequently, we jettisoned or-
thomodularity and returned to the core quantum logic known as orthologic, or
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rather that sublogic of it, intuitionistic orthologic, obtained by deleting the non-
constructive axioms.

Given rules of inference, the process of making deductions from a set of
formulae deemed to be axioms may be codified into a system known as natural
deduction. A simple such system reproduces, for example, the deductions of
intuitionistic logic, and epitomizes the so-called Heyting interpretation of this
logic: a formula is identified with its set of deductions and the rules of intuitionistic
logic are thereby modelled by adhering grimly to this constructive paradigm. Thus
A is intuitionistically valid if and only if its proof set is non-empty, etc. In particular,
B is deducible from A if and only if there exists a map from the set of proofs of
A to the set of proofs of B. Cartesian products of such proof sets are associated
with logical conjunctions of the corresponding formulae, and disjoint unions with
logical disjunctions of them. If labels are now used to systematically keep track
of the ebb and flow of deductions through their trees, a constructive model of
computation soon emerges, describable by means of λ-calculus. Thus, a formula
determines a type and a label for one of its deductions may be considered to be
a variable (or term) of that type. Deductions then correspond to programs, which
transform types. When formalized, this correspondence between deductions in a
natural deduction system and programs (i.e. sequences of λ-terms) is known as
the Curry-Howard correspondence. (For this section please see Selesnick (2003a)
and its references.)

In order to formulate a theory applicable wholesale to the universe of such
proofs (or programs) it is necessary to move up to a level at which such proofs are
themselves the basic entities. This step was achieved by Gentzen with his so-called
sequent calculus. In this calculus the basic object is the sequent

� � � (1)

in which � and � stand for (possibly empty) finite sequences of formulae, and
the informal reading of Eq. (1) is along the lines of: “

∧
� ⇒ ∨

�”. One may
start from the formal specification of a sequent calculus, without assumptions
concerning the presence or otherwise of an underlying natural deduction system,
and proceed formally in abstracto to develop a theory of proofs with wide ramifi-
cations. Quite often it is possible—by a judicious choice of term assignments—to
reproduce an underlying deduction system for which this sequent calculus then
represents a metacalculus. As metacalculi for natural deduction systems these se-
quent caculi delineate certain symmetries and structural aspects of the underlying
deductive system which are hidden if one remains at the lower level of the under-
lying system. The organizing power of the style has had a major impact on the
proof theoretic aspects of deductive logic.

The sequent calculus idea lends itself to other interpretations. A revolution
occurred when Girard realized that it could be used to effect an extremely refined
computational theory of resource management: here, a sequent of the form (1)
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is read, roughly speaking, as the depiction of a process in which the resource
� is consumed to produce the resource �. The concomitant logical rules and
connectives then acquire entirely new and more general interpretations and obey
new laws. The computational and logical ramifications of the resulting logic, called
linear, have been deep and wide. This system contains standard intuitionistic logic,
with a concomitant deep analysis of its implicative connective, and much else
besides.

In Selesnick (2003a) we posited a minimal sequent calculus, GQ, for quantum
resources, which in fact coincides with a fragment of a version of linear logic. We
found that formulae in the deductive version of intuitionistic orthologic translate
into formulae of GQ via a recipe derived by applying a quantum version of the
Heyting paradigm. This recipe is identical to one used to translate (non-quantum)
intuitionistic logic into linear logic, which thereby acquires an interesting quantum
interpretation.

We shall be concerned in this paper only with the multiplicative fragment of
GQ, whose rules are reproduced below.

GQ
StructuralRules

EXCHANGE

�,A,B, �′ � D

�,B,A,�′ � D
LE

� � A ⊗ B

� � B ⊗ A
RE (2)

WEAKENING

� � D

�, !A � D
LW No RW (3)

CONTRACTION

!A, !A,� � D

!A,� � D
LC No RC (4)

The Identity Group
AXIOM

A � A Ax (5)
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CUT

� � A A,�′ � D

�,�′ � D
CUT (6)

Multiplicative Logical Rules
CONJUNCTIVE (MULTIPLICATIVE) CONNECTIVE

�,A,B � D

�,A ⊗ B � D
L⊗ � � A �′ � B

�,�′ � A ⊗ B
R⊗ (7)

NEGATION

� � A ⊗ D

�,A∗ � D
L∗ �,A � D

� � A∗ ⊗ D
R∗ (8)

!

�,A � D

�, !A � D
L!

!� � A

!� �!A
R! (9)

(Recall that here D stands for either a single formula or no formula, i.e. the
empty sequence, and when it appears in the form ⊗D, the ⊗ symbol is presumed
to be absent when D is empty.)

To introduce a dynamical element into the tabula rasa represented by GQ
we append a single axiom, which in this paper we shall name, as follows.

AXIOM D

!A � !t ⊗ !A Ax D (10)

Here t denotes a logical atom and A is any formula. The idea is that t
represents a resource (a “time step”) which may be used to accompany, or “time,”
each repeatable resource !A via a deduction (10) which preserves each type. When
expressed as a deduction in the static, resource insensitive language of intuitionistic
orthologic this condition translates into Ax D. It is a simple exercise to show that
an equivalent form for it is:

(!t)∗ � (!A)∗⊗ (!A) (11)

If the formula D can be deduced from � in GQ, with Ax D appended, we
shall in this paper write � � D, leaving the turnstile unadorned. Such sequents
are called proofs. The of course operator !—following Girard in his parlance and
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notation—is provided for the purposes of supplying the storage capable version of
a quantum resource, which in general does not admit such an operation of copying
into storage.

As discussed in Selesnick (2003a) GQ may be realized or interpreted within
the category HF of finite dimensional complex Hilbert spaces, a natural choice
from the point of view of quantum physics. In this realization each atomic formula
in GQ is associated with an object in HF . Then GQ formulae are built up by
interpreting ⊗ and ( )∗ to have their usual meanings in HF , and by assigning
interpretations in HF to the basic sequents of GQ. (As in Selesnick (2003a) we
shall not in this paper distinguish notationally between formulae used abstractly
in GQ and their interpretations in HF .)

Of particular interest is the interpretation of !A as the exterior algebra E(A)
(or Fermi–Dirac Fock space based on A) with its full structure as a graded Hopf
algebra with coproduct ψ : E(A) → E(A) ⊗ E(A), determined on first grade
elements x by

ψ(x) = 1 ⊗ x + x ⊗ 1, (12)

effecting the quantum duplication operation in the rule LC (of (4)), an operation
clearly producing entangled states. (As of this writing, no other candidate for
!A realized in HF seems to be known.) It is interesting also since if A is taken
to represent a “quantum set,” then E(A) represents the quantum set of quantum
subsets of this quantum set A, in Finkelstein’s formulation: this enables a di-
rect logical interpretation to be given to the basic storage capable unit, namely
E(H(1)) ∼= C ⊕ H

(1), where H
(n) represents the complex Hilbert space of dimen-

sion n. E(H(1)) is of course also known as the qubit.
Returning to Ax D in the form in given in Eq. (11) we note that whatever

interpretation is given to t in HF the right-hand side will yield:

E(A)∗⊗E(A) ∼= End E(A) (13)

and with a choice of basis in A inducing a decomposition

A ∼=
n⊕

k=1

C, (14)

where n = dim A, we obtain

E(A) ∼= E

(
n⊕

k=1

C

)

∼=
n⊗

k=1

E(C)

∼= H
(2n). (15)
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Thus, as noted, for n = 1, the qubit E(C) emerges as the irreducible storage
capable unit in HF , and the general case is a tensor product of these.

To interpret the multiplexed time step classically requires a different choice
for the interpretation of the ! operator, which takes us out of the category HF . This
could be allowed for by expanding somewhat both the rules of GQ and the target
category in which we interpret them, a project we leave for a later paper. To avoid
any possible toxicity arising from such mixing of categories—which would affect
only the rules of negation—we shall in this paper adopt Ax D in the form given
by Eq. (11), taking care to avoid inappropriate uses of the rules of negation.

In Selesnick (2003a) we chose to interpret !t as C [t], the (commutative)
polynomial algebra in one variable (which coincides both with the bosonic Fock
space and the tensor algebra on the one-dimensional space) with its (cocommu-
tative) coalgebra coproduct given as in Eq. (12). Then C [t]∗, expressible also as
the space C [[t]] of formal power series in t, becomes a commutative algebra with
product ∗ given by the dual of the coproduct. With

δm(tn) = δm,n, (16)

where δm,n denotes the usual Kronecker delta, we found that

δm ∗ δn = (m + n)!

m! n!
δm+n (17)

so that

δn = 1

n!
δn

1 (18)

where powers are taken in the product ∗.
Taking t literally to represent the infinitesimal time step dt we may interpret

its dual δ1 (in End E(A)) as the tangent ∂
∂t

, an antihermitian operator in its usual
incarnation. If we assume also that Ax D (in the form (11)) respects the repetitive
behavior of the resource “time,” we arrive at the specification of the map which
interprets (11) as an algebra homomorphism in which δ1 is assigned an operator
upon End E(A) of the form −iH , where H is Hermitian. On noting that the
additive group C is isomorphic with the group HomAlg(C [t] , C) (with the group
structure inherited from the Hopf algebra structure, which coincides with ∗ when
the later set is regarded as a subset of C [t]∗) via the map

z 
→ hz (19)

where

hz = δ0 + z δ1 + z2 δ2 + · · · (20)

we obtain a map

R ↪→ C → End H
(2n) (21)
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given by

t 
→ e−iH t . (22)

Thus is derived the basic notion of a quantum computation in classical time.

2. CUTS AND LAGRANGIANS

Starting from an unadorned (intuitionistic) Gentzen sequent calculus one
may generally derive a corresponding natural deduction system by the judicious
assignment of terms to sequents and by then regarding these terms as λ-calculus
like descriptions of underlying deductions. In this way a Gentzen sequent calcu-
lus yields its computational capacity and/or acquires a functional interpretation.
Significant such interpretations have been given to linear logic, for instance, in
Abramsky (1993).

Since in this paper we shall be dealing exclusively with an interpretation in
a category of vector spaces of the sequent calculus GQ, with Ax D appended, we
shall postpone the ticklish exercise of rigorous term assignment to this calculus
itself. Instead, we shall use the logical structure of GQ as a guide to the manip-
ulation of the familiar terms of the theory of these spaces. Thus, for a sequent
of the form A � B, term assignments would entail the possibility of naming (or
labelling) different terms of type Hom(A,B) or, in the category HF , of naming
different maps.

The sequent calculus conventions usually place the term to the right of the
turnstile as in: A � φ : B.

Consider a sequent of the form (cf. (11)):

A,B � A. (23)

Two instances of this sequent, namely

A,B � φ1 : A A,B � φ2 : A (24)

may be CUT to produce the sequent (cf. (6))

A,B,B � φ2?φ1 : A (25)

where the term φ2?φ1 to the right of the turnstile will be interpreted as follows:
the two interpreted sequents

φ1 : A ⊗ B → A φ2 : A ⊗ B → A (26)

are CUT to produce

φ2(φ1 ⊗ 1B) : A ⊗ B ⊗ B → A. (27)
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Now φk : A ⊗ B → A uniquely determines a map fk : B → End A (k =
1, 2) given in an obvious notation by

fk(b) a = φk(a ⊗ b) (28)

(cf. Mac Lane (1963), p. 145) so that

φ2(φ1 ⊗ 1B)(a ⊗ b1 ⊗ b2) = φ2(φ1(a ⊗ b1) ⊗ b2)

= φ2(f1(b1) a ⊗ b2)

= f2(b2)f1(b1) a (29)

Thus, cutting the two sequents together yields the map B ⊗ B → End A

given by

b1 ⊗ b2 
→ f2(b2)f1(b1), (30)

and, similarly, applying CUT to n such sequents yields a map
⊗n

k=1 B → End A

given by

b1 ⊗ · · · ⊗ bn 
→ fn(bn) · · · f1(b1). (31)

Note that the fk s are applied in the order in which the cuts are executed, with the
earlier ones appearing to the right.

Now we apply this to n instances of Ax D, with B = C [t]∗ (= C [[t]]) in the
form A, C [t]∗ � A non-toxically derived from (11), A being finite dimensional,
with a fixed Hilbert space A(= H

(2n)) ≡ H, but with possibly different choices Hk

of Hamiltonians. We obtain the map
⊗n

C [[t]] → End H (32)

given by the analogue of (31), and, as in Section 1, we obtain the map of additive
groups

⊗n

Z
R →

⊗n

Z
C [[t]] (33)

given by

t1 ⊗ · · · ⊗ tn 
→ ht1 ⊗ · · · ⊗ htn (34)

(with the commutative algebra structure ∗ of C [[t]] being used on the right: recall
that ht1+t2 = ht1 ∗ ht2 in the notation of Section 1.) Composing the last two maps,
we obtain, for any sequence (�t1,�t2, . . . ,�tn) of real numbers, the map

n∏
R → End H (35)

given by

(�t1,�t2, . . . ,�tn) 
→ e−iHn�tne−iHn−1�tn−1 . . . e−iH1�t1 . (36)
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In summary, for choices Hk and any sequence (�t1,�t2, . . . , �tn) of
real numbers, by executing the indicated CUTS we obtain in discrete form the
corresponding time-ordered integral, denoted in the physics literature as

Te−i
∫
T

H (t) dt , (37)

where T is a path in R (since the �tk may differ in sign) whose subdivision yields
the �tk .

Thus we have realized the execution of cuts—the primary locus of “com-
putation” itself in the proof theoretical view of computation—in terms of the
basic quantum mechanical dynamical operator (37). (In the Schrödinger picture
of quantum mechanics a state ψ at time t , |ψ(t)〉, is given a general prescription
of the form

|ψ(t)〉 = Te−i
∫ t

0 H (t)dt |ψ(0)〉 .) (38)

Now the quantities of physical interest are not the observable operators them-
selves but rather their associated amplitudes, and it is when we consider these
amplitudes that the Lagrangian appears. The general formula for such a transi-
tion amplitude between sufficiently characteristic states |ψ(t2)〉 and |ψ(t1)〉, as
discovered by Feynman, is given by

〈ψ(t2)|ψ(t1)〉 =
∫

e
i
∫ t2
t1

L(t)dt Dψ (39)

where L denotes the associated Lagrangian; the inner integral is over a path
connecting ψ(t1) to ψ(t2) and the outer integral is over all such paths,Dψ denoting
a rather optimistically conceived measure over the space of such paths.

The inner integral is a limit of discretizations of the relevant path in R and
we have, over an element of such a discretization:

〈ψ(t + �t)|ψ(t)〉 ∝ e iL(t)�t . (40)

The inner path integral itself may be realized as the limit of products proportional
to the right hand side of (40). Such products may now be thought to result from
the execution of cuts of instances of Ax D, with the Lk replacing the Hk .

Thus ei
∫
Ldt is the limit of the amplitudes which result from all the possible

cuts, or quantum computations, required to compute that path’s contribution to-
ward the transition amplitude. So, in a sense, the operator

∫
Ldt contains all the

information concerning the effect of sequences of those cuts required to accom-
plish the computation, along the path in question, of that path’s contribution to
the transition amplitude between the initial and final states. Thus it is indeed a
good representer of “computational capacity” relative to the path in question, as
surmised by Toffoli (Toffoli (1999); see also Frank (2005)).

We digress briefly to interpret a simple such path integral from this point of
view: namely, the case of the vacuum-to-vacuum amplitude for a charged fermion
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of mass m and charge e interacting with an external electromagnetic field. Here
the interaction Lagrangian density is of the form

LI = η̄ (i /D − m) η (41)

where /D = /∂ + ie /A, and η denotes the fermion field operator regarded here as a
Grassmannian variable. (Note that since the Dirac matrices are essentially operator
versions of the differentials dxµ, /∂ is essentially an operator version of the act of
infinitesimal transport along a principle generator of the light-cone. So the term
η̄ /∂ η may be parsed loosely as follows:

η destroys a particle;

/∂ infinitesimally transports the resulting hole through spacetime;

η̄ then creates a particle at the site of the relocated hole.

Consequently, this term, when integrated, computes the transport of the particle
along a path. Similarly, the term η̄ /Aη represents in-place interaction of the fermion
with the external field.)

The vacuum-to-vacuum transition amplitude is given by the Grassmannian
path integral

∫

ei
∫
η̄(i /D−m)η Dη̄Dη = det(i /D − m)

= det(i /∂ − m − e /A)

= det(i /∂ − m) det

(

1 − i

i /∂ − m
(−ie /A)

)

. (42)

Ignoring the first factor (an infinite constant) and recalling that det M =
exp(tr ln M) we may expand the interaction factor as:

det

(

1 − i

i /∂ − m
(−ie /A)

)

= exp
∞∑

n=1

(

−1

n

)

tr

[(
i

i /∂ − m
(−ie /A)

)n]

= exp
∞∑

n=1

(

−1

n

)∫

tr[(−ie /A(x1))SF (x2 − x1) · · ·

· · · (−ie /A(xn))SF (x1 − xn)] dx1 . . . dxn, (43)

where SF is the appropriate propagator. Now each term in the summa-
tion represents a possible “computation” of the relevant contribution to the
vacuum-to-vacuum amplitude in which the particle propagates between in-
teractions with the bosons of the external field. Each such term corresponds
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to the Feynman vacuum-to-vacuum diagram with n legs shown below:

Thus, in this naı̈ve example, the path integral does indeed contain explicit infor-
mation concerning the entire repertoire of quantum “computations” open to the
system (fermion, field) undergoing a vacuum-to-vacuum transition, each of which
is depicted by a Feynman diagram of the above type.

3. MODELS AND REPRESENTATIONS

In this section we consider the structure of possible Hamiltonians, as con-
strained by the algebraic dictates of our logical model. First we briefly mention a
consequence of the qubit register structure which will be taken up in more detail
elsewhere. Namely, as already noted, for an object H

(n) in HF a choice {ξk}nk=1 of
basis induces an isomorphism

H
(n) ∼=

n⊕

k=1

C

≡ C ξ1 ⊕ · · · ⊕ C ξn, (44)

where we use the last expression in order to distinguish the summands. Such a
decomposition then induces an isomorphism, or encoding, of the exterior algebra
into the n-fold quantum register. Namely,

E
(
H

(n)) ∼= E (C ξ1 ⊕ · · · ⊕ C ξn)

∼= E (C ξ1) ⊗ · · · ⊗ E(C ξn). (45)

For example, with n = 2, we have a two qubit register decomposing as

E (C ξ1)⊗E (C ξ2) ∼= E (C ξ1 ⊕ C ξ2) (46)

or

(C ⊕ C ξ1) ⊗ (C ⊕ C ξ2) ∼= C ⊕ (C ξ1 ⊕ C ξ2)⊕
∧2

(C ξ1 ⊕ C ξ2) . (47)
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The unadorned C one both sides represents the corresponding “vacuum” or quan-
tum “off” states (which function also as the units for the respective algebras).
The middle term on the right is itself a qubit and corresponds (via) canonical
isomorphisms) to a component of the left hand side as follows:

C ξ1 ⊕ C ξ2
∼= (C ξ1 ⊗ C) ⊕ (C ⊗ C ξ2) (48)

in which ξ1 
→ ξ1⊗1 and ξ2 
→ 1⊗ ξ2.
In the usual notation the 1s correspond to the “off” computational states,

which we shall write |0〉1 and |0〉2, and the ξk to the “on” states |1〉k , k = 1, 2.
Thus our encoding yields a representation of a qubit in a combined system in
which a basis of computational states may be written |1〉1 |0〉2 and |0〉1 |1〉2 or
just |10〉 and |01〉. This is the “dual-rail” representation: cf. Nielsen and Chuang
(2000). (More elaborate encodings are possible with bigger qubit registers and
there are concomitant physical interpretations in terms of many body systems.
These matters will be taken up elsewhere.)

Now we turn to the issue of Hamiltonian structure. As is well-known, and
easily checked, the most general single qubit Hamiltonian acting on some H

(2)

may be written in the form:

H = �0I + �1σ1 + �2σ2 + �3σ3 (49)

where the �s are, for the time being, real constants and the σ s are the usual

Pauli matrices: σ1 = (
0 1
1 0

), σ2 = (
0 −i

i 0
), σ3 = (

1 0
0 −1

). Here H(2) is assumed

fixed. (We have absorbed, or ignored, various constants which are irrelevant to our
discussion here.)

Introducing a term structure into GQ entails the possibility of multiplexing
instantiations of H

(2) itself over some set of terms. Such a set of terms may
be identified with a set of experimenters, each using a different instantiation of
H(2), or with a set of labels for such a set of experimenters. Then the ubiquitous
overall ignorable complex phase which would accompany each state in H

(2) in a
particular instantiation—that is, at a particular label—would in general vary from
label to label. That is to say, the space H

(2)
1

∼= C ⊗C H
(2) at time t1 will in general

be related to the space H
(2)
2

∼= C ⊗C H
(2) at time t2 by a unitary Berry-like phase

factor g12 ≡ eiθ12 , θ12 ∈ R, acting on the first factor C. (These factors are, of course,
ignorable in the case of a fixed choice of H

(2) for all terms (times)). Assuming
consistency among the various phase factors for different t , the collection of Cs
form a (complex) line bundle L over the set of terms, or space of parameters R.

Now the multiplexing of a Hilbert space of states over a space of parameters
marks the transition to a (quantum) field theory and requires the introduction of
machinery—second quantization—appropriate to that subject. Observables must
now act globally upon the bundles involved and in this context line bundles are
associated with the statistics of bosons, essentially because any tensor product ⊗nL
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of line bundles is necessarily symmetric. (See Selesnick (1983), or Mallios (2006)
for an exhaustive treatment.) In our case a simplification is achieved because L
may always be trivialized (R being contractible) and so we can consider it to be
the trivial bundle over R with fibre C. The L2 cross-sections of such a bundle,
which constitute the Hilbert space of states for the boson field that emerges, is then
just L2(R) realized as the bosonic Fock space over C defining a field of bosons of
a single species or mode, with annihilation (creation) operators written a(a†).

Proceeding entirely formally, we revert to the general Hamiltonian (Eq. (49))
and note that it may be second quantized to accommodate the boson field by the
usual method of replacing the real amplitudes �k by Hermitian operators upon
L2(R), all of which may be expressed ultimately in terms of the operators a, a†.
Thus H is promoted as follows:

H = �0 ⊗ I + �1 ⊗ σ1 + �2 ⊗ σ2 + �3 ⊗ σ3. (50)

In this way, a general mechanism for executing quantum computations upon
a single qubit seems to be generated by:

• coupling a fermionic two-state quantum to a field of single mode bosons;
and

• inducing transitions by joint annihilation/creation of the paired fields.

We can now make some simple choices for the � operators. For instance, let
us try first the following prescription:

�0 = c0a
†a, �k = 0, k = 1, 2, 3

where c0 is a real constant. This is exactly the pure bosonic quantum harmonic
oscillator, in which the fermionic storage capable element is entirely irrelevant.
This can be encoded according to the “dual-rail” prescription described earlier
and turns out to be unsatisfactory for various reasons (Nielsen and Chuang, 2000).
From our point of view, the problem resides in the fact—already mentioned—that
this representation is not storage capable in the technical sense of our logic. The
problem with it is usually attributed to its not being “digital.”

More interesting is the following minimal choice, for real constants ck:

�0 = c0a
†a, (51)

�1 = c1(a + a†), (52)

�2 = c2i(a − a†), (53)

�3 = c3. (54)

With c1 = c2 = g this yields

H = c0a
†a ⊗ I + g(a† ⊗ σ− + a ⊗ σ+) + c3σ3 (55)

where σ± = 1
2 (σ1 ± σ2).
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With an appropriate choice of constants, this is exactly the Jaynes–
Cummings Hamiltonian (in the “rotating wave” representation). The first
term represents a harmonically oscillating boson source and the middle term
corresponds to the interaction between the boson field and the fermion
qubit: a boson annihilation(a)/creation(a†) is accompanied by a fermion
raising(σ+)/lowering(σ−) as a boson is absorbed/emitted. The third term rep-
resents the Hamiltonian for the two-state fermion itself, c3 being interpreted as the
energy difference between its two levels.

This Hamiltonian covers the quantum computational paradigms described
by the terms: cavity QED (the bosons being photons) and trapped ions (in which
the boson are phonons in the ambient medium). When suitably multiplexed to
many qubits, it also covers the case of the NMR paradigm. (Cf. Mawhinney and
Schreckenbach (2004) and Nielsen and Chuang (2000).)

4. HOLONOMIC QUANTUM COMPUTATIONS

In this brief final section we shall indicate how the setup described above—
which generates quantum computations—maybe generalized, in a completely nat-
ural fashion, to more general spaces of parameters to yield the notion of holonomic
quantum computation.

Let us return to Ax D in the form given in Eq. (11):

C [t]∗ � End H. (56)

We have identified t with the 1-form dt on R which generates the space �1(R)
of (complex) cotangents on R (which is the space dual to the tangent space).
Moreover, the algebra structure on C[t]∗ is given by the dual of the coalgebra
coproduct on C [t] (Eq. (12)).

This generalizes to the case when the manifold R of presumed parameters
(instants of time) is replaced by a more general manifold of parameters M, which
could be spacetime itself or sub-manifolds thereof, or something more general.
Then, C [t] (∼= T

(
�1(R)

)
) is replaced by T(�1(M)) where T ( ) as usual denotes

the tensor algebra functor, and the map interpreted by the analogue of Eq. (56) is
presumed to also preserve the algebra structures. Then Ax D generalizes directly
to yield

T(�1(M))∗ � End H, (57)

an algebra morphism with the algebra product on the left being that given by the
dual of the algebra product on the tensor algebra. This (commutative) product,
also denoted by ∗, is given explicitly on generators by adding all shuffles of their
indices, a shuffle of two sets being a permutation of their union preserving the
original order of each constituent set (cf. Selesnick (2003b), p. 227). Thus, for
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example

ak1k2 ∗ ak3 = ak1k2k3 + ak1k3k2 + ak3k1k2 . (58)

(Note that this of course reduces to the product ∗ on C [t]∗.) The generalization of
Eq. (22), namely the assignment

t∗ = δ1 = (dt)∗ = ∂

∂t

→ −iH,

for Hermitian H , now generalizes to

∂

∂xµ

= Xµ 
→ −iAµ (59)

where the Xµ constitute a tangent field on M, µ = 1, . . . , dimM, with Aµ

Hermitian. The −iAµ constitute a field of elements in the Lie algebra u(N ),
N = dimH, of the unitary group U (N ). Now, writing T(�1(M))∗ as the space
of formal series T [[Xµ]], we note that the tensor algebra T (Xµ) on the symbols
Xµ inherits the shuffle product structure from T [[Xµ]] when realized as the
subspace of finite series (or finitely supported) elements thereof. Moreover, T (Xµ)
acquires also a non-cocommutative coproduct structure, coming essentially from
the original product structure of the tensor algebra T (Xµ). It is given explicitly by

ψC (Xµ1Xµ2 · · ·Xµn ) = Xµ1 · · ·Xµn ⊗ 1 + Xµ1 · · · Xµn−1 ⊗ Xµn

+ · · · + 1 ⊗ Xµ1 · · · Xµn. (60)

(Note that in the case of a single generator this reduces to the one dimensional
affine algebraic structure Eq. (12) described in Section 1). This coproduct is in
fact a morphism for the shuffle product so that with the shuffle product and the
coproduct given above T (Xµ) has the structure of a bialgebra. Consequently,
HomAlg(T (Xµ) , C) has the structure of a (non-commutative) semigroup given as
usual by φ1 ∗ φ2 = φ1 ⊗ φ2 ◦ ψC .

Now the assignment (59) naı̈vely encapsulates the notion of a (u(N )) con-
nection on what is now a bundle of Hs which vary over the space of terms or
parameters: for each tangent at a point of M, an infinitesimal transformation is
assigned to the corresponding Hilbert space fibre. Conversely, given such an as-
signment, it is possible to globalize it in a way which generalizes the steps from
(11) to (22). In the course of so doing holonomic computations arise quite natu-
rally. We shall summarizes the steps in this quite technical argument: more detail
is supplied in Selesnick (2003b), Chapter 12.

Suppose then that we have a set Xµ, µ = 1, . . . , n, of indeterminates, and
assignments

Xµ 
→ Bµ, (61)
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where the Bµ are elements of the Lie algebra g of a compact Lie group G. The
Lie algebra g may be embedded into its universal enveloping algebra U (g) via the
canonical map

ι : g → U (g). (62)

Since U (g) is an associative algebra, composition of this with the assignments
(61) lifts to a map of algebras

φB : T (Xµ) → U (g) (63)

by the universal property of the tensor algebra. This map is given by

φB (Xµ1 · · · Xµk ) = ι (Bµ1 ) · · · ι (Bµk ) . (64)

It is quickly verified that this is a map also of coalgebras. Consequently, the dual

φ∗
B : U (g)∗ → T (Xµ)∗ (65)

is a map of the dual algebras. Let R(G) denote the (Hopf) algebra of representative
functions on G. This is the algebra generated (finitely in the Lie case) by the
coefficients of irreducible unitary representations. There is a commutative algebra
morphism

θ : R(G) → U (g)∗ (66)

given on generators as follows. For an irreducible unitary representation σ : G →
GL(V (σ )), where GL( ) denotes the general linear group of the vector space
argument, let

u
(σ )
ij (g) = 〈ξi |σ (g)| ξj 〉 (67)

where g ∈ G and {ξk} is an orthonormal basis in V (σ ). Then dσ : g → gl(V (σ )),
where gl(V (σ )) is the Lie algebra of GL(V (σ )), is a map of Lie algebras. By the
universal property of U ( ), dσ lifts uniquely to a map of algebras

Lσ : U (g) → End V (σ ). (68)

Then θ is given, for w ∈ U (g), by

θ
(
u

(σ )
ij

)
(w) = 〈ξi |Lσ (w)| ξj 〉. (69)

Thus we obtain a map of commutative algebras

φ∗
B ◦ θ : R(G) → T (Xµ)∗ (70)

where the shuffle product is understood on the right.
Now suppose that we are given a sufficiently well-behaved curve C in M.

Then, as observed by Ree (1958), a homomorphism, also denoted by C,

C : T (Xµ)∗ → C, (71)
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is determined by

C(Xµ1 · · · Xµn ) =
∫

C

dxµ1 . . . dxµn
(72)

where the right hand side denotes the corresponding Chen iterated integral defined
inductively as follows. We suppose the curve C to be defined by specifying
a continuous function f : [ a, b ] → M of bounded variation. For each integer
m ≥ 0 and t ∈ [ a, b ] we define an iterated integral (over the curve C) recursively
by

∫ t

a

1 = 1, (73)

∫ t

a

dxµ1 . . . dxµn
=

∫ t

a

(∫ s

a

dxµ1 . . . dxµn−1

)

ẋµn
(f (s)) ds (74)

Then the iterated integral over C—the right hand side of Eq. (72)—is defined
to be

∫ b

a
dxµ1 . . . dxµn

(cf. Tavares (1994)).
Now, owing to the fact the for each σ there exists a conjugate representation

σ̄ such that

u
(σ̄ )
ij = u

(σ )
ij

for some choice of basis, it is easy to see that the composition

hB
C ≡ C ◦ φ∗

B ◦ θ : R(G) → C (75)

satisfies

hB
C(f̄ ) = hB

C(f ). (76)

Consequently, by the Tannaka–Krein duality theorem, there exists an element
g∈G such that, for all f ∈R(G):

f (g) = hB
C(f ). (77)

For f = u
(σ )
ij and unfolding the various maps we obtain

〈
ξi |σ (g)| ξj

〉 =
∞∑

p = 0

∑ ∫

C

〈
ξi | Lσ (ι(Bµ1 ) · · · ι(Bµp ))| ξj

〉
dxµ1 . . . dxµp

= 〈ξi |
∞∑

p = 0

∑ ∫

C

Lσ (ι(Bµ1 ) · · · ι(Bµp )) dxµ1 . . . dxµp
| ξj 〉. (78)

Since σ and {ξk} are arbitrary we conclude that
∞∑

p = 0

∑ ∫

C

Bµ1 · · ·Bµp dxµ1 . . . dxµp
∈ G. (79)
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This is exactly the formula for computing the holonomy along C: namely,
that element in the structure group of the bundle that effects the parallel transport
of fibres along the path. (Note that when pulled back appropriately, or when M
is Euclidean space, the iterated integral amounts to an ordinary integration over a
simplex of the form {(xk1 , . . . , xkp

) : a ≤ xk1 ≤ . . . ≤ xkp
≤ b}).

By remarkable results of Chen (cf. Tavares (1994)) it is the case that a
sufficiently nice curve C is uniquely determined by the family of iterated integrals
over it up to a reasonable notion of equivalence of curves. Moreover, when curves
are regarded in this way as elements of HomAlg(T (Xµ), C) (with the shuffle
product on T (Xµ)) the operation of composition of curves corresponds exactly to
the semigroup product on HomAlg(T (Xµ), C) described earlier.

Thus, denoting by PM the set of paths in M, the embedding

PM → T (Xµ)∗

given above preserves the respective semigroup structures: this is a direct gener-
alization of the procedure described in Section 1 (and Selesnick (2003a)) for the
case of a one-parameter set of terms.

As before, executing sequences of cuts yields compositions of holonomies
which preserve the order of execution. In particular, let us consider the case in
which a short line segment C is given by

f (s) = (fµ1 (s), . . . , fµn
(s)), where fµk

(s) = s�xµk
, s ∈ [0, 1]. (80)

Then
∫

C

Bµ1 · · · Bµp dxµ1 . . . dxµp
= 1

p!
Bµ1 · · ·Bµp�xµ1 . . . �xµp

(81)

so that

∞∑

p = 0

∑ ∫

C

Bµ1 · · · Bµp dxµ1 . . . dxµp
= exp (Bµ�xµ), (82)

invoking the Einstein summation convention on the right. By approximating any
curve by similar short line segments, and setting Bµ ≡ −iAµ, we obtain sequences
of holonomic computations arising from cuts exactly as before: the induced or-
dering is now called path-ordering.

In this way, holonomic quantum computations induced by driving a system
along paths in some manifold of parameters may be effected. It is indeed remark-
able that this paradigm seems actually to be physically implementable, though the
details, both physical and mathematical, are exceedingly subtle. (Cf. for instance
Wu et al. (2005).)

We will return to this topic in a sequel.
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